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Stationary periodic and solitary waves induced by a strong short laser pulse
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The propagation of a relativistically intense short laser pulse into an isotropic plasma is described. A kinetic
equation for the spectral function of the electromagnetic waves is derived for an arbitrary amplitude pump
wave, where the fully relativistic case is considered. The resulting kinetic equation of the spectral function is
used along with the set of equations of the plasma to derive a general dispersion relation, where relativistic
effects play an important role. In the case of a superstrong short laser pulse, Langmuir waves, with phase
velocities larger than the speed of light, and waves of ion-sound type, which are damped only on ions, are
found. In addition, for the case when the plasma density along with the mass of the electrons satisfies the
“frozen-in” condition, stationary nonlinear new type of ion-sound waves are investigated. The mechanism of
the emission of these waves is also discusp8ii063-651X99)01112-3

PACS numbes): 52.40.Nk, 52.60+h, 52.35.Mw

I. INTRODUCTION chromatic radiation bunches with a nonmagnetized plasma.
The paper is organized as follows. First in Sec. Il, starting
The development of ultraintense short pulse lasers allowffom Maxwell's equations for the EM field in a relativistic

exploration of fundamentally new parameter regimes forplasma, we derive a general equation for the EM spectral
nonlinear laser-plasma interaction. In fact, a number of exintensity. Then in Sec. Ill we derive the plasma wave disper-
periments have been carried out in which plasmas are irradbion relation in the presence of the relativistic ponderomotive
ated by laser beams with intensities up td®1@v/cn?. At force and discuss a type of longitudinal plasma waves in-
such intensities the electron quiver velocity rapidly ap-duced by a strong short pulse laser. In the same section it is
proaches the speed of light, and a host of phenomena hagdown that the ratio of the plasma density to the mass of the
been predicted such as the parametric resonance in an ele&lectrons is conserved, or there is a “frozen-in” condition in
tron plasma[1], the relativistic wave breakinfg], the for- the case of stationary waves. The stationary nonlinear ion-
mation of types of soliton§3], the relativistic self-focusing sound waves are discussed in Sec. IV and the velocity of the
[4,5], the generation of “light wind”[6], the formation of ~Wwaves and the maximum potential of the field are defined.
collisionless shock waveg7], the relativistic modulational Finally, a brief summary and discussion of our results are
and filamentational instabilitief8], and the generation of given in the last section.
large amplitude plasma wavésake field$ [6,9]. Numerous
works [10-15 have been devoted to the investigation of Il. DERIVATION OF THE KINETIC EQUATION
relativistically intense EM wave propagation into plasma, FOR THE PHOTON GAS
with the radiation pressure being larger than the plasma pres- )
sure. The above treatments were restricted to the case of We start from Maxwell equations for momentum for a
monochromatic EM waves. For ultrashort pulses the bandcircularly polarized EM wave
width of coherent wave is increasingly broad. Even if the
bandwidth may be initially narrow, its spectrum may even- ) #p n
tually broaden, either as a result of several kinds of instabil- Vop- F: ;p, @
ity processes, or as the result of other nonlinear wave-wave
Interaction processes. !n .order.to study the |nteract[on O\f/vhere the following dimensionless quantities have been in-
spectrally broad relativistically intense EM waves with atroduced:
plasma, we adopt the EM spectral intensit|. This picture
of high-frequency EM processes in a plasma opens a way to

. . w
the formulation of conceptually new problems in plasma p—)i, t—wet, r—kpr, kp:ﬁ,
electrodynamics. MoC ¢
In the present paper, we consider a class of problems
involving the interaction of relativistically intense nonmono nes =, y=(1+p?)¥2
0
*Electronic address:levan@apr.jaeri.go.jp wherew, . is the electron plasma frequency, associated in the
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We shall consider Eqg(l) at two distinct points and in- J
stants of time. Following the procedure described in Ref. (a’ﬁ_"k'VR) P(R,t,k,w)
[16], we can derive an equation for the correlation function
(p(ry,t)p(ra,ty))y=II(ry,ty,r5,t,), where(---) denotes

ensemble averaging =§ (-1' (1 p(RY) * PR LK, )
5 ) =0 (2|+1)| 2 §R2|+1 (9k2l+1
(VE—VE)H(rl,rz,tl,tz)—(F—? H(ry,rz,t1,t2) 1 ' 1p(R,t) 2T IP(R, LK, 0) g
v 2 g2+l J? 1 ©
=(p1=p2)IL(r1,ry,t3,t5), (2
wherep=n(r,t)/y(r,t). ll. LINEAR LONGITUDINAL PLASMA WAVES.
Introducing new variables FROZEN-IN CONDITION
1 1 We now consider the propagation of small perturbations
R=—(r;+ry), r=r;—r,, t==(t;+ty), 7=t;—t,, in such a plasma. To this end, we linearize K@) with
2 2 3 respect to the perturbations, which are represented as
Eq. (2) yields p=poTt op expi(q-R—Qt),
( 52 1 P(R,t,k,w)=Py(k,w)+ SPexpi(q-R—Qt). (10
VrV ——)H(R,r,t,T)I—(p —p)II(R,r,t,7),
R atar 27t e The result is
4
o1 1
where k— = - -
(a-k=Qw)oP=0p 2, CESPE
_ R r T R r T
P17 P2=p1| RT 5,1+ 5] =po| R=5. 1= 5. y

2l+1
qvkm%) Po(k,@) (1D

Performing a Fourier transformation Bf(R,r,t,7) on the
variables ¢, 7) we can introduce the power spectral function or after summation we obtain the following relation:
P(R,t,k,w) or Wigner representation

+ g Q
(gk—Qw) 6P=6p{ Py | k+ E,w-i— >
P(R,t,k,w)zf drf drII(R,t,r,7)expi(kr —w7).
Q
® —Po(k—g,w—E ] (12
We can also write for the momentum autocorrelation func-
tion Then from Eq.(6) we have for the perturbation df,
dk [ do dk (deo P§—P,
H(R,t)z(pz(R,t»:f—f—P(R,t,k,w). (6) :j f_w 0 ~Po
(2m)%) 27 ol (2m)3) 2mq-k—Qo op (13
Taking the double Fourier transformation of Hg), we and for 8p we can write
obtain an evolution equation for the power spectral function, p
in the form SN 1
Sp=———=4Il. 14
P= 272 (14)

Jd
(wﬁ+k-VR)P(R,t,k,w)

From Egs.(13) and (14) follows the relation betweedll

1

=§f er d7(py— pa)TI(R.LT, )expi (kr —wr). (7)  2ndon

_ _ _ _ L 1 dk J’dw Ps —Po ST
Now expanding f,— p,) in Taylor series we can write 2_78 (2m)? ﬂq-k—ﬂw

o 11 1 g\m -

p1=p2= 2 — |50Vt 57| p[1=(=1)"]. (8 sn( dk (dw Pi—P;
Eoml |2 27t _on f_ (15

Yo) (2m)%) 27 q-k—Qo’

We can see from the above expansion that only the odd

terms inm are nonzero. So, we can choase=2l+1. Fi- In the absence of the density perturbatiém we get from
nally, we obtain after integration the following equation for Eq. (15 the dispersion relation due to relativistic self-
the spectral function modulation
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1 dk [ do P{—P; After linearization of this equation with respect to the per-

| /| =2 " _p. 16 turbation we have
2v3) (2m)®) 2m k= Qo (18

Equation (16), as well as the case withn#0, has been 1

studied in Ref[8] for monochromatic waves. F=— ——V Il expi(q-R—Qt), (18
We now define the relativistic expression for the pondero- 20

motive force

F=-Vy=—-V[1+II(R,1)]*2 (17)  or using Eq.(15) we obtain

_ 1 fdk/(zw)3f (dw/27)(P§ —Py)/(gk— Qo)

- -V énexpi(q-R—Qt). (19
2% l+(1/2y(3))f dk/(27-r)3J’ (dw/2m)(Py —Py)/(dk— Qo)

Some interesting relativistic features follow from the expres-nal wave in a plasma due to a strong laser pulse. Such a
sion of the ponderomotive fordd9). First, in the case when possibility exists, if the condition

the dominator goes to zef® increases, obn—0. Second,

when the integral in the dominator becomes much greater wgeJ' dk [de Pg—Pqy

than unity, we have (2m)? 20 qkc?— Qw

>1 (22
294
F=—voVénexpi(q-R-Q). (20 is satisfied. In this case the dispersion relati@d is reduced

This expression of the ponderomotive force coincides for—t0 the form

mally with the gasdynamic force, only instead of the tem- 2.2
2 S g°c
perature we havenyyyc” in Eq. (20), and it exists only for (1+6g))| 1+ 589_> +8e,=0. (23
the relativistic motion of the electrons in a superstrong short wge
pulse laser.

Now, if we write kinetic equations for electrons and ions This dispersion relation describes the propagation of a sta-
with the ponderomotive forcel7) and linearize them, taking tionary longitudinal wave in the presence of relativistically
into account the relatiofil5), we obtain the general disper- intense EM waves.
sion relation in dimensional form. The result is Let us now consider some special limits. First, in the case

when only electrons participate in the oscillation, i.8s,

0l dk [do P{-P; =0, for Q> qVye, Wherevye=(Ts/my)*2 we obtain from
gl 1+ — f — 5 Eqg. (23
2v3) (2m)%) 27 gke?— Qo
02=wj.+q%c?. (24)
1
+(1+ 5si)5seq2c2—2 This is a Langmuir wave due to strong relativistic effects.
27, The physical interpretation for Eq24) is that the strong
b ponderomotive force not only leads to the separation of
Xf dk f d_w Po —Po —0 1) charge and creation of the longitudinal self-consistent field,
(2m)3) 27 q-ke2-Qw but also generates the dispersion teyfu?, which is due to
the strong coupling of EM waves with the electrons.
where Next in the case, whe#éin; # 0, two frequency ranges can
be considered fof). One iskvy;<Q<kvy., and the other
47€? [ (qdfo,!p) is kvtre<_<Q<wpe- For b_oth cases we obtain from E@3) a
e=1+ e+ de;, Jde,= dp, type of ion-sound solution
q? Q—-qg-v
) Q_(mm’o)m qc _ qCs
L M| (1+ g% wi) M (142 wi) '
Yo (25

Equation(21) has several complex solutions far, resulting It is clear that now the characteristic length of the inhomo-
in different types of instability. But here we focus our atten-geneity is comparable to/ e, but not to the electron De-
tion on the case of the propagation of a stationary longitudibye length as we have for the ion-sound wave without a laser
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pulse. As follows from Eq(25) the maximum value of the ions of such waves, we employ hydrodynamic equations
frequency isw,;, similar to the result obtained in RdfL7].  with a self-consistent field:

We specifically note here that,=c(myy,/m;)*? now de-

pends not only on the mass of the particles, but also on the IPe I , dn

intensity of the laser pl_JIséyf,:(l_Jr_Ho)l/z]. Therefore, Tt gk Mo Yoy (29)
these waves in an experiment exhibit frequencies depend on
the intensity of the laser pulse and the sort of gas. The rela-

tivistic modes in particle-in-cell simulations were reported in mi<i ii = —e@, (30)
Ref.[18]. at X 12
We now try to physically understand existence of the so-
lutions (24) and (25). First note that for the stationary case in 9
when the laser pulse propagates with a constant velecity EﬂL 5nue=0, (32)
=(kc?/ w)[P(R,t,k,w)=P(k,w,R—vt)], the result(20) for
the ponderomotive force can be obtained without the linear-
ization of Eq.(9). In this case, the left-hand side of E@) ﬂJr in-u:o (32)
becomes zero and one of the solutions of &4.is a - oax !
p= n(R.H) = const (26) Hereu; ,n; are the ion velocity and density, respectively, and
Y(R,1) ' ¢ is the electrostatic potential which is coupled with the
or equivalently electron and ion densities through the Poisson equation
n > 4me(n—n;) (33
— — L =4aTm —1Il).
() =const, Ix2 i

which shows that the plasma density and mass of the ele&quations(29)—(33) are a closed set of equations describing
trons satisfy a “frozen-in” condition. This condition implies the propagation of one-dimensional waves including solitary
a localization of the energy of the laser pulse in the region ofvaves we are interested. In this case we can let all quantities
high plasma density. The solution identical with E26) was  depend on coordinates and timeasvt, wherev is con-
shown in Ref[19], considering the strong EM wave propa- stant. From Eqs(29)—(32) the following expressions for
gation in an electron-positron plasma. In the case when exelectron and ion densities are obtained:

pression(26) is valid, we obtain a simple expression for the

ponderomotive force from Eq17) for arbitrary variation of n ed
the density — =1+ —, (34)
Mo Mg yoC?
n
F=-— mo'yOCZVn— . (27) ~12
0 n 1 2ed (35
One can simply show that if the “frozen-in” condition No m;v?2 '

(26) is fulfilled, the hydrodynamic equatiorid6], the equa-
tion of motion, and the equation of continuity for electrons Sybstituting these expressions for the densities into the Pois-
become linear and for an arbitrary variation of the electronson equation, we get

density we have the following linear equation:

—1/2

e¢

2
MpYoC

2
9? n—ng ¢

B 2ed
w2 C2V2) =0, (28) o2 Ameno 1=

1+
miV2

(36)

at? No

This equation shows that for plane waves one can obtain the Now we first consider the case whep<mv?/2, i.e.,
same dispersion relation as EQ4). It is important to em-  stationary waves with weak nonlinearity. In this case the last
phasize that Eq(1) with condition (26) becomes a linear term in Eq.(36) can be expanded in a power series and we
equation and EM wave momentum with arbitrary power will obtain

spread out in a plasma.

2

2 v2 my?

o wgi<v—§‘l) Jua st 37)

2
IV. STATIONARY PERIODIC AND SOLITARY WAVES X v

In this section, we consider the propagation of stationary If we neglect the last term in Eq37), there are two
nonlinear ion-sound waves, when the phase velocity of gossibilities in the linear approximation. The first is the
type of ion-sound waves is large compared with the electropropagation of ion-sound waves with the velocity given in
thermal velocity and the plasma density along with the mas&q. (25), whenm,v2<mgyy,c?. In the second case when the
of the electrons satisfies the “frozen-in” conditid26). To  opposite inequality is valid, we obtain a type of the Debye
describe the one-dimensional motion of the electrons angotential with the characteristic scale length
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c e?¢? 2e v
o=————5—71s (38) 2€Pmaxt —¢ma;+2miv2 1- ¢’“zax -1 =0,
wpe(1—c5/ve) Mg yoC m;v @5
4

This expression shows that the effect of the Coulomb field
extends to a distance of the orderrgf, which plays a role and from here we obtain
of the Debye screening distance.

Now let us consider the structure of a solitary wave, for e¢d 2

- . . 2 2 . 2_ 2 max
this it is necessary tha,v->myvy,c. Then the solution of ve=cg| 1+ —2m 2| (46)
Eq. (37 is 0o

mv3(v2/c2—1) We note here that Eq45) hag a solution only whet;bn]ax is
- ! s (39 Mot too large. From Eq(45) it follows that the maximum

Chz(wpi /v)(v2/c§— 1)Y2(x—vt) possible value of the amplitude of the ion-sound wave can be
determined from the relatiom;v2/2=ed¢., because ions
and can no longer move across the potential barrier. Solving this
equation together with EQ.(46) we obtain ey
L vZ [ v2 1 =2myyoc? and for the velocity of the stationary ion-sound
o + 2| e Ch2 (e V) (VI 2 D) 2 x—v1) solitary wavev = 2c.

(40)
V. SUMMARY AND DISCUSSION
Since we have supposed theag<m;v?2/2, from Eq.(39) it is
clear that|v2/c§—1|<1. The relation between the propaga-
tion velocity v and the maximum amplitudé,,,. of the
wave, can be obtained from E(R9),

We have investigated the propagation of a relativistically
intense short laser pulse into an unmagnetized plasma. Start-
ing from the fully relativistic equations, we have derived a
general kinetic equation for the photon gas. This is valid for
ed waves with a large spectral width. The relativistic expression
vi=c2+ —7max (41)  for the ponderomotive force is also derived and some inter-

m; esting relativistic features are discussed. The kinetic equation
was used to derive the plasma wave dispersion relation and
the propagation of stationary longitudinal waves in the pres-
ence of relativistically intense EM waves is studied. Due to

_ Dmax strong relativistic effects a novel Langmuir wave with phase
¢= chz(wpi/cﬁ)(eqﬁmax/mi)l’z(x—vt)' (42) yelocities larger than the speed of light anq waves of the
ion-sound type, which are damped only on ions, are found.

We see thabh>n, andn;>n,, since¢>0. A solitary wave In addition, for the case wher_1 the plasana dens_itx along .With
in a quasiequilibrium plasma is, therefore, always a comprest-he mass of the e_Iectrons ;at|sf|es b fmze”"!" condition,
sional wave. stationary periodic and solltqry waves are studled..The rela-
Turning now to the study of Eq36), we integrate it once fuor? between the wave gmphtude and Its propagapon veloc-
to obtain ity is derived. The possible mechanism of the emission of a
new type of ion-sound waves may be attributed to the laser
2 pulse acceleration due to the plasma inhomogenidy. In
this case one can find an explicit form of the density distri-
Mo YoC? bution in emission of ion sound, as has been shown in Ref.
[20]. These dynamics of the plasma under the relativistically
intense electromagnetic waves may be relevant in the study
of the contemporary problems of laser-matter interaction
such as the fast ignitor concef®1]. In this scheme, short

Various periodic waves can now be found depending on th@ulse laser energy deposition efficiency and spacetime char-
choice of the integration constaAt In the case wheg and ~ acteristics are essentially important, since the deposited laser
dlax—0 at|x—vt|—o, we haveA= —8mn,myv2. This  €Nergy has to be efficiently transferred to dense plasmas. In
case corresponds to a solitary wave. We find the equatioH“S context, it is necessary to understand how a relativisti-

which determines the potentid as a function of the coor- cally intense short pulse laser propagates into ove.rdensg
dinates and time plasmas through long scale underdense plasma. As investi-

gated in this work, in the case of a superstrong short pulse

do laser a type of ion-sound waves can be generated. Which can

X—vt== f S S (44)  be of great importance for the heating of plasma. This wave

[E2(<;S)]1’2 is intensity dependent, therefore it can be observed in experi-

ments and possibly be used as a diagnostic of ultraintense

The velocity of propagation of this wawe as a function of short pulse laser propagation. Langmuir waves with phase
the maximum amplitude of the wavé,,.,, is found from  velocities larger than the phase velocity of the laser pulse can
Eq. (43) by writing d¢/9x=0 at ¢p= pyayx, 1.€., also exist due to strong relativistic effects, as is found in this

and now for¢ we have

2
E2(¢)=<%) =477er10[2¢+

1/2
2 2e
+ Emivz( 1- _¢

— FA. (43
i
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